Math, asked by aka2ragaditifathaiu, 1 year ago

If l cosec thita + m cot thita + n = 0 and l' cosec thita + m' cot thita + n' = 0, show that (mn' - m'n) 2 - (nl'- n'l) 2 = (lm' - l'm) 2

Answers

Answered by ARoy
21
lcosecθ+mcotθ+n=0
or, lcosec
θ+mcotθ=-n
l'cosec
θ+m'cotθ+n'=0
or, l'cosec
θ+m'cotθ=-n'
∴, (mn'-m'n)²-(nl'-n'l)²
=[m{-(l'cosecθ+m'cotθ)}-m'{-(lcosecθ+mcotθ)}]²-[{-(lcosecθ+mcotθ)}l'-{-(l'cosecθ+m'cotθ)}l]²
=(-ml'cosecθ-mm'cotθ+m'lcosecθ+mm'cotθ)²-(-ll'cosecθ-ml'cotθ+ll'cosecθ+m'lcotθ)²
=cosec²θ(m'l-ml')²-cot²θ(m'l-ml')²
=(m'l-ml')²(cosec²θ-cot²θ)
=(m'l-ml')
²
=(lm'-l'm)² (Proved)
Similar questions