if l,m and n are real and , then the roots of the equation
[tex](l-m) x^{2} - 5(l+m)x - 2(l-m) + 0
[/tex] , are
a) real and equal
b) complex
c) real and unequal
d) none of this
Answers
Answered by
6
(l - m)x² -5( l + m)x -2(l - m) = 0
where l ≠ m
find Discriminant = b² - 4ac
= {5(l + m)}² + 8( l - m)²
= 25l² + 25m² + 50ml - 8l² - 8m² -16ml
= 17l² + 17m² + 34ml
=17{ l² + m² + 2ml }
= 17( l + m)² > 0
hence, D> 0 so, roots are real and unequal . option (C) is correct .
where l ≠ m
find Discriminant = b² - 4ac
= {5(l + m)}² + 8( l - m)²
= 25l² + 25m² + 50ml - 8l² - 8m² -16ml
= 17l² + 17m² + 34ml
=17{ l² + m² + 2ml }
= 17( l + m)² > 0
hence, D> 0 so, roots are real and unequal . option (C) is correct .
catchmeifucan:
but how can we say that roots are unequal ?
Answered by
3
Hey hi !
(l - m)x² -5( l + m)x -2(l - m) = 0
a = l - m
b = - 5 ( l+m)
c = -2(l-m)
Here
l ≠ m
========================================================
In order to find the nature of roots , we have to find the discriminant :-
b² - 4ac is the discriminant :-
so,
= [5(l + m)]² - 4 × (l-m) × - 2 (l-m)
= [5(l + m)]² + 8( l - m)²
= 25l² + 25m² + 50ml - 8l² - 8m² -16ml
= 17l² + 17m² + 34ml
=17[ l² + m² + 2ml ]
= 17( l + m)²
17( l + m)² > 0
When b²- 4ac > 0 , the nature of roots is =>
Real and unequal
===================================
IF b²- 4ac = 0 , the roots would have been equal roots
==============================
If b²- 4ac < 0 , then there would be no real roots !
(l - m)x² -5( l + m)x -2(l - m) = 0
a = l - m
b = - 5 ( l+m)
c = -2(l-m)
Here
l ≠ m
========================================================
In order to find the nature of roots , we have to find the discriminant :-
b² - 4ac is the discriminant :-
so,
= [5(l + m)]² - 4 × (l-m) × - 2 (l-m)
= [5(l + m)]² + 8( l - m)²
= 25l² + 25m² + 50ml - 8l² - 8m² -16ml
= 17l² + 17m² + 34ml
=17[ l² + m² + 2ml ]
= 17( l + m)²
17( l + m)² > 0
When b²- 4ac > 0 , the nature of roots is =>
Real and unequal
===================================
IF b²- 4ac = 0 , the roots would have been equal roots
==============================
If b²- 4ac < 0 , then there would be no real roots !
Similar questions