Math, asked by sagarrajak01pcdnnd, 1 year ago

if log 2,log(2^x-1) and log (2^x-3) are in AP . find x

Answers

Answered by shashankavsthi
1
given

 log(2)  \:  log( {2}^{x}  - 1)  \:  log( {2}^{x} - 3 )  \:  \: are \: in \: ap
so

2 log( {2}^{x}  - 1)  =  log(2)  +  log( {2}^{x} - 1 )  \\  \\2  log( {2}^{x}  - 1)  =  log(2( {2}^{x}  - 1)  \\  log( ({2x - 1})^{2} )  =  log(2( {2}^{x}  - 1)  \\  \\ taking \: antilog \: both \: sides \\   { ({2}^{x}  - 1)}^{2}  = 2( {2}^{x}  - 1) \\  {2}^{2x}  + 1 -  {2}^{x } \times 2 = 2 \times  {2}^{x}  - 2 \\ now \: take \:  {2}^{x}  = t \\ and \: solve \: quadratic \: eq
hope it will help you!

sagarrajak01pcdnnd: i have got my answer !
shashankavsthi: good!
Similar questions