Math, asked by prmkulk1978, 1 year ago

if log (a^3-b^3)-log 3=3/2 (log a+lob b) then find the value of (a/b)^3 +(b/a)^3

Answers

Answered by abhi178
36
log(a^3-b^3)-log3=\frac{3}{2}(loga+logb)

2[log(a^3-b^3)-log3]=3(loga+logb)

2log(a^3-b^3)-2log3=3(loga+logb)

we know,
logM+logN=logMN\\\\AlogM=logM^A

log(a^3-b^3)^2-log3^2=3logab

log(a^3-b^3)^2-log9=log(ab)^3

log(a^3-b^3)^2-log(ab)^3=log9

we also know, logA-logB=log\frac{A}{B}

log\frac{(a^3-b^3)^2}{(ab)^3}=log9

removing log from both sides,

\frac{(a^3-b^3)^2}{(ab)^3}=9

\frac{a^6+b^6-2a^3b^3}{a^3b^3}=9


\frac{a^6}{a^3b^3}+\frac{b^6}{a^3b^3}-\frac{2a^3b^3}{a^3b^3}=9

\frac{a^3}{b^3}+\frac{b^3}{a^3}-2=9

(a/b)^3+(b/a)^3=9+2=11


prmkulk1978: Thanks Abhi..
abhi178: thank you mam :)
prmkulk1978: Great Answer
Answered by mysticd
20

Hi ,


It is given that ,


log(a³-b³)-log3 = 3/2[logs+logb]


=> log[(a³-b³)/3] = 3/2log(ab)

***********************************


By Logarithmic rules :


1 ) log m - log n = log m/n


2 ) log m + log n = log ( mn )


3 ) n log m = log mⁿ

****************************************

=> 2log[ (a³-b³)/3] = 3log(ab)


=> log[(a³-b³)/3]² = log(ab)³


Remove log both sides of the


equation , we get


(a³- b³)²/3² = (ab)³


=> (a³-b³)² = 9a³b³


=> (a³)² + (b³)² - 2a³b³ = 9a³b³


=> (a³)² + ( b³ )² = 11a³b³


=> Divide each term with a³b³,


both sides of the equation


[(a³)²/(a³b³)+ [(b³)²/(a³b³)] = 11a³b³/a³b³


=> (a/b)³ + ( b/a)³ = 11


I hope this helps you.


: )


prmkulk1978: Thanks Sir
Similar questions