if log (a- b ) /5 = 1/2 (log a + log b ) show that A^2 + b^2 =27 ab
Answers
Question :
if log (a- b ) /5 = 1/2 (log a + log b ) show that a² + b² =27 ab
Given :
log (a - b)/5 = 1/2 (loga + logb)
To show :
a² + b² = 27ab
Solution :
Let's start with what is given :
⇒ log(a - b)/5 = 1/2 (log a + log b)
⇒ 2 log (a - b)/5 = log a + log b
⇒ log { (a - b)/5 }² = log(ab) [∵ n logₐ b = b logₐⁿ]
⇒ {(a - b)/5}² = ab [Taking away log from both sides]
⇒ (a² - 2ab + b²)/25 = ab
⇒ a² - 2ab + b² = 25ab
⇒ a² + b² = 25ab + 2ab
⇒ a² + b² = 27ab [Showed]
Therefore,
If log (a - b )/5 = 1/2 (log a + log b ), then a²+ b² = 27 ab [showed]
♣ Qᴜᴇꜱᴛɪᴏɴ :
- If show that a² + b² =27ab
★═════════════════★
♣ ɢɪᴠᴇɴ :
★═════════════════★
♣ ᴛᴏ ꜱʜᴏᴡ :
- a² + b² =27ab
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
Multiplying both sides with 2 :
Using logarithm property :
Taking log on both sides :
Cross multiply :
We know (a - b)² is an algebraic identity and (a - b)² = a² + b² - 2ab
Adding 2ab on both sides :