if log (a-b÷5)=1÷2(log a+log b) then find a÷b+b÷a
Answers
Answer:-
This is the required solution.
Given,
Removing log from both side, we get,
Now, squaring both side, we get,
Now,
From (i), we can say that a²+b²=27 ab
So,
Hence,
Which is the required answer.
Answer:
This is the required solution.
Given,
\sf log( \frac{a - b}{5} ) = \frac{1}{2} ( log(a) + log(b) )log(
5
a−b
)=
2
1
(log(a)+log(b))
\sf \implies log( \frac{a - b}{5} ) = \frac{1}{2} log(ab)⟹log(
5
a−b
)=
2
1
log(ab)
\sf \implies log( \frac{a - b}{5} ) = log( \sqrt{ ab})⟹log(
5
a−b
)=log(
ab
)
Removing log from both side, we get,
\sf \implies \frac{a - b}{5} = \sqrt{ ab}⟹
5
a−b
=
ab
\sf \implies a - b = 5\sqrt{ ab}⟹a−b=5
ab
Now, squaring both side, we get,
\sf \implies (a - b)^{2} = (5\sqrt{ ab})^{2}⟹(a−b)
2
=(5
ab
)
2
\sf \implies {a}^{2} + {b}^{2} - 2ab = 25 ab⟹a
2
+b
2
−2ab=25ab
\sf \implies {a}^{2} + {b}^{2} = 27 ab \: ...(i)⟹a
2
+b
2
=27ab...(i)
Now,
\sf \frac{a}{b} + \frac{b}{a}
b
a
+
a
b
\sf = \frac{ {a}^{2} + {b}^{2} }{ab}=
ab
a
2
+b
2
From (i), we can say that a²+b²=27 ab
So,
\sf \frac{ {a}^{2} + {b}^{2} }{ab}
ab
a
2
+b
2
\sf = \frac{27 \cancel{ab}}{ \cancel{ab}}=
ab
27
ab
\sf = 27=27
Hence,
\boxed{ \sf \frac{a}{b} + \frac{b}{a} = 27 }
b
a
+
a
b
=27
Which is the required answer.