Math, asked by samarth7589, 1 year ago

if log^x÷a(b-c)=log^y÷b(c-a)=log^z÷c(a-b) then show that xyz=1​

Answers

Answered by janu2011
3

Step-by-step explanation:

given that

 \frac{ log(x) }{ a(b - c)}   =  \frac{ log(y) }{b(c - a)}  =  \frac{ log(z) }{c(a - b)}  = k \\ so \:  log(x ) = ka(b - c) \\  log(y) =  kb(c - a ) \\  log(z)  = kc(a - b) \\  log(x)  + log(y)  + log(z)  = ka(b - c) + kb(c - a) + kc(a - b) \\  log(xyz) = k{a(b - c) + b(c - a) + c(a - b)} \\  log(xyz) = k \times 0 \\  log(xyz)  = 0 \\ so \\ xyz = 1 \\  \\ from \: log \: property   \\ i \: hope \: t \: will \: help \: you

Similar questions