Math, asked by riyasapar, 11 days ago

if log x/b-c = log y/c-a = log z/a-b, prove that xyz = x^a y^b z^c = 1

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given Logarithmic function is

\rm :\longmapsto\:\dfrac{logx}{b - c}  = \dfrac{logy}{c - a}  = \dfrac{logz}{a - b}

Let assume that

\rm :\longmapsto\:\dfrac{logx}{b - c}  = \dfrac{logy}{c - a}  = \dfrac{logz}{a - b}  = k

So,

\rm :\longmapsto\:\dfrac{logx}{b - c}    = k

\rm :\longmapsto\:logx = k(b - c)

\rm :\longmapsto\:alogx = ak(b - c)

\bf\implies \:log {x}^{a} = k(ab - ac) -  -  -  - (1)

Also,

\rm :\longmapsto\:\dfrac{logy}{c - a}    = k

\rm :\longmapsto\:logy = k(c - a)

\rm :\longmapsto\:blogy = bk(c - a)

\bf\implies \:log {y}^{b} = k(cb - ba) -  -  -  - (2)

Also,

\rm :\longmapsto\:\dfrac{logz}{a - b}  = k

\rm :\longmapsto\:logz = k(a - b)

\rm :\longmapsto\:clogz = ck(a - b)

\bf\implies \:log {z}^{c} = k(ca - bc) -  -  -  - (3)

On adding equation (1), (2) and (3), we get

\rm :\longmapsto\:log {x}^{a} + log {y}^{b} + log {z}^{c} = k(ab - ac + bc - ab + ac - bc)

\rm :\longmapsto\:log {x}^{a} + log {y}^{b} + log {z}^{c} = k(0)

\rm :\longmapsto\:log {x}^{a} + log {y}^{b} + log {z}^{c} = 0

\rm :\longmapsto\:log[{x}^{a} \:  {y}^{b} \: {z}^{c}] = 0

\rm :\longmapsto\:log[{x}^{a} \:  {y}^{b} \: {z}^{c}] = log1

\rm\implies \:\boxed{\tt{ {x}^{a} \:  {y}^{b} \: {z}^{c} =1 \: }} \\

[ See from attachment xyz = 1 ]

We concluded that

\rm\implies \:\boxed{\tt{ xyz\: =\: {x}^{a} \:  {y}^{b} \: {z}^{c} =1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ bloga \:  =  \: log {a}^{b}}} \\

\boxed{\tt{ loga + logb = logab \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{  log_{x}(x)  = 1 \: }} \\

\boxed{\tt{  log_{x}( {x}^{y} )  = y \: }} \\

\boxed{\tt{  log_{ {x}^{z} }( {x}^{y} )  =  \frac{y}{z}  \: }} \\

\boxed{\tt{  log_{ {x}^{z} }( {w}^{y} )  =  \frac{y}{z}  log_{x}(w)  \: }} \\

\boxed{\tt{  {a}^{ log_{a}(x) }  = x}} \\

\boxed{\tt{  {a}^{ ylog_{a}(x) }  =  {x}^{y} }} \\

\boxed{\tt{  {e}^{ ylog_{e}(x) }  =  {x}^{y} }} \\

Attachments:
Similar questions