Math, asked by vnakerkar2425, 10 months ago

If log[x+y/3]=1/2[logx+logy]=1/2[logx+logy] find the value of x/y+y/x

Answers

Answered by Anonymous
105

Question:

if \sf\:\log( \frac{x + y}{3} )  =  \frac{1}{2} ( \log(x)  +  \log_{}(y) )

find the value of \sf\:\dfrac{ x}{y} + \dfrac{ y}{x}

Solution :

\sf\:\log( \frac{x + y}{3} )  =  \frac{1}{2} ( \log(x)  +  \log_{}(y) )

use property :

log(a) + log (b) = log (ab)

_________________________________

\sf\:\implies\:log( \frac{x + y}{3} )  =  \frac{1}{2}  log(xy)

\sf\:\implies\:log( \frac{x + y}{3} )  -  \frac{1}{2} log(xy)   = 0

use property log (a/b) = log a- log b

____________________

\sf\:\implies\:log(x + y)  -  log(3)  -  \frac{1}{2} log(xy)   = 0

\sf\:\implies\:2 log(x + y)  -  log(xy)  = 2 log(3)

use property :

\sf\:\log(a)  {}^{n}  = n log(a)

\sf\:\implies\:\log(x + y) {}^{2}  -  log(xy)  =  log(3) {}^{2}

Now use property ;

log (x/y ) = logx -logy

________________________

\sf\:\implies\:\log( \dfrac{(x + y) {}^{2} }{xy} )  =  log(9)

\sf\:\implies\:\dfrac{(x + y ){}^{2} }{xy}  = 9

\sf\:\implies\dfrac{x {}^{2} + y {}^{2}   + 2xy}{xy}  = 9

\sf\:\implies\dfrac{x {}^{2} }{xy}  +  \dfrac{y {}^{2} }{xy}  +  \dfrac{2xy}{xy}  = 9

\bf\:\implies\dfrac{x}{y}   +  \dfrac{y}{x}  = 7

it is the required solution!

Properties of logarithm :

\sf1) log(a)  +  log(b)  =  log(b)

\sf2) log( \frac{a}{b} )  =  log(a)  -  log(b)

\sf3) log(a)  {}^{n}  = n log(a)

\sf4)  log_{x}(x)  = 1

Answered by lasya1816
15

log(x+y/3) = 1/2(log x + log y)

log(x+y/3) = 1/2 log (xy)

log(x+y/3) = log (xy)1/2

log(x+y/3) = log (xy)

REMOVE LOG ON BOTH SIDES

(x+y/3) = xy

SQUARING ON BOTH SIDES

(x+y/3)² = (xy)²

(x+y)²/(3)² = xy

(x+y)²/9 = xy

(x+y)² = 9xy

++2xy = 9xy

+ = 9xy-2xy

+ = 7xy

+/xy = 7

/xy + /xy = 7

x/y + y/x = 7

HOPE THIS HELPS U MATE...

Similar questions