Math, asked by angothganya75, 9 months ago

if log(x+y/3)=1/2(logx +logy) then find the value of x^2/y^2+y^2/x^2​

Answers

Answered by hero257
0

Step-by-step explanation:

Hi,

log [ ( x + y )/3] = 1/2 ( logx + logy)

2× log[ ( x + y )/3 ] = log x + log y

log [ ( x + y ) / 3 ]^2 = log xy

{ since i ) n log a = log a^n

ii ) log a + log b = log ab }

Remove log bothsides,

[ ( x + y ) / 3 ]^2 = xy

( x + y )^2 / 3^2 = xy

x^2 + y^2 + 2xy = 9xy

x^2 + y^2 = 9xy - 2xy

x^2 + y^2 = 7xy

Divide each term with xy

x^2 / xy + y^2 / xy = 7xy / xy

x / y + y / x = 7

I hope this help you.

PLEASE MARK AS THE BRAINIEST

Similar questions