Math, asked by laliadithya1234, 6 months ago

If log(x+y/3)= log x + logy, then
find the value of x/y+ y/x​

Answers

Answered by anindyaadhikari13
11

Question:-

  • If \sf \log(\frac{x+y}{3}) = \log(x)+\log(y), then find the value of \sf \frac{x}{y}+\frac{y}{x}

Answer:-

  •  \boxed{ \sf \frac{x}{y}  +  \frac{y}{x}  = 9xy - 2}

Solution:-

Given,

 \sf \log( \frac{x + y}{3} ) =  \log(x) +  \log(y)

 \sf \implies \log( \frac{x + y}{3} ) =  \log(xy)

Now, removing log from both the sides, we get,

 \sf \implies \frac{x + y}{3}  = xy

 \sf \implies x + y= 3xy

Now, squaring both sides, we get,

 \sf \implies {(x + y)}^{2} = (3xy)^{2}

 \sf \implies {x}^{2}  +  {y}^{2} + 2xy = 9 {x}^{2}  {y}^{2}

 \sf \implies {x}^{2}  +  {y}^{2}= 9 {x}^{2}  {y}^{2}  - 2xy

 \sf \implies {x}^{2}  +  {y}^{2}=xy(9xy - 2)

Now,

 \sf \frac{x}{y}  +  \frac{y}{x}

 \sf =  \frac{ {x}^{2} +  {y}^{2}  }{xy}

 \sf =  \frac{ \cancel{xy}(9xy - 2)}{ \cancel{xy} }

 \sf = 9xy - 2

Formula Used:-

  • \sf\log(a)+\log(b)+\log(c)+...=\log(abc...)
Attachments:
Similar questions