If log10 (a²-15a) = 2, then a= ?
Answers
Answered by
4
Heya user ,
Here is your answer !!
_________
log 10 ( a² - 15a ) = 2
=> log 10 ( a² - 15a ) = log 10 100
=> a² - 15a = 100
=> a² - 15a - 100 = 0
=> a² - 20a + 5a - 100 = 0
=> a ( a - 20 ) + 5 ( a - 20 ) = 0
=> ( a + 5 ) ( a - 20 ) = 0 .
So , a can be either -5 or +20 . [ Answer ] .
__________
Hope it helps !!
Here is your answer !!
_________
log 10 ( a² - 15a ) = 2
=> log 10 ( a² - 15a ) = log 10 100
=> a² - 15a = 100
=> a² - 15a - 100 = 0
=> a² - 20a + 5a - 100 = 0
=> a ( a - 20 ) + 5 ( a - 20 ) = 0
=> ( a + 5 ) ( a - 20 ) = 0 .
So , a can be either -5 or +20 . [ Answer ] .
__________
Hope it helps !!
ankush26:
u r amazing
Answered by
7
log10 (a² - 15a) = 2
we know,
loga X = n
X = aⁿ use this here,
log10 (a² - 15a) = 2
a² - 15a = 10²
a² - 15a - 100 = 0
a² - 20a + 5a - 100 = 0
a(a -20) + 5(a - 20) = 0
(a + 5)(a - 20) = 0
a = 20 , -5
but for log to be defined ,
(a² - 15a)>0 , a> 15 and a<0
so , a = 20 and -5 are solutions of given expression.
we know,
loga X = n
X = aⁿ use this here,
log10 (a² - 15a) = 2
a² - 15a = 10²
a² - 15a - 100 = 0
a² - 20a + 5a - 100 = 0
a(a -20) + 5(a - 20) = 0
(a + 5)(a - 20) = 0
a = 20 , -5
but for log to be defined ,
(a² - 15a)>0 , a> 15 and a<0
so , a = 20 and -5 are solutions of given expression.
Similar questions