Math, asked by sayyedumar922, 3 months ago

IF log² (log³(log²x))=1 show that x=512​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

  \sf \: log_{2}( log_{3}( log_{2}(x) ) )  = 1, \: show \: that \: x \:  =  \: 512

\large\underline{\sf{Solution-}}

We know that,

 \boxed{ \sf \: If  \:  log_{a}(b)  = c \: then \: b \:  =  \:  {a}^{c} }

So,

Consider,

\rm :\longmapsto\:\sf \: log_{2}( log_{3}( log_{2}(x) ) )  = 1

\rm :\implies\: log_{3}( log_{2}(x) )  =  {2}^{1}

\rm :\implies\: log_{3}( log_{2}(x) )  =  {2}

\rm :\implies\: log_{2}(x)  =  {3}^{2}

\rm :\longmapsto\: log_{2}(x)  = 9

\rm :\implies\:x =  {2}^{9}

\rm :\longmapsto\:x = 512

{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

\rm :\longmapsto\: log(x) +   log(y)  =  log(xy)

\rm :\longmapsto\: log(x) -   log(y)  =  log(\dfrac{x}{y} )

\rm :\longmapsto\: log( {x}^{y} )  = y log(x)

\rm :\longmapsto\: log_{x}(y)  = \dfrac{ log(y) }{ log(x) }

\rm :\longmapsto\: log(1)  = 0

Similar questions