If log2=o.3010 and log3 =0.4771,find value of log5-log27+log under root 8
Answers
log5-log27+log√8
= log 10/2 - log (3)^3 + log2✓2
= log10- log2- 3log3+log2✓2
=1-0.3010-3(0.4771)+(0.1651)
=1-0.3010-1.4313-0.1651
=-0.5612
I hope you understand...
Therefore the value of log 5 - log 27 + log √8 is -0.2806.
Given:
Logarithmic values: log 2 = 0.3010, log 3 = 0.4771, and log 5 = 0.6989
To Find:
The value of log 5 - log 27 + log √8
Solution:
The given question can be solved as shown below.
Given that: log 2 = 0.3010, log 3 = 0.4771, and log 5 = 0.6989
Let y = log 5 - log 27 + log √8
⇒ y = log 5 - log 3³ + log 2√2
⇒ y = log 5 - 3log 3 + log 2√2 [ ∵ log aⁿ = n log a ]
⇒ y = log 5 - 3log 3 + log 2 + log √2 [ ∵ log ab = log a + log b ]
⇒ y = log 5 - 3log 3 + log 2 + log
⇒ y = log 5 - 3log 3 + log 2 + 1/2 log 2 [ ∵ log aⁿ = n log a ]
Now substituting the values of log 2, log 3, and log 5 in the above equation.
⇒ y = log 5 - 3log 3 + log 2 + 1/2 log 2
⇒ y = 0.6989 - ( 3 × 0.4771 ) + 0.3010 + ( 1/2 × 0.3010 )
⇒ y = 0.6989 - 1.4313 + 0.3010 + 0.1505
⇒ y = 1.1507 - 1.4313
⇒ y = -0.2806
Hence y = log 5 - log 27 + log √8 = -0.2806
Therefore the value of log 5 - log 27 + log √8 is -0.2806.
#SPJ3