Math, asked by abhi868450, 1 year ago

If log2

x + log4

x + log16x = 21/4, these x is

equal to​

Answers

Answered by guptasingh4564
8

x is equal to 10^{\frac{7}{3} (\frac{3}{4}-log2)}

Step-by-step explanation:

Given;

log2x+log4x+log16x=\frac{21}{4}

log(2x\times4x\times16x)=\frac{21}{4}  (∵loga+logb=log(a\times b) )

log(128x^{3})=\frac{21}{4}

log128+logx^{3}=\frac{21}{4}

log2^{7} +3logx=\frac{21}{4}  (∵logx^{a} =alogx)

7log2 +3logx=\frac{21}{4}

3logx=\frac{21}{4}-7log2

logx=\frac{7}{3} (\frac{3}{4}-log2)

x=10^{\frac{7}{3} (\frac{3}{4}-log2)}

So, x is equal to 10^{\frac{7}{3} (\frac{3}{4}-log2)}

Similar questions