If log2a/4=log2b/6=log2c/3k and a³b²c=1, find the value of K.
Answers
Answered by
0
Answer:
-8
Step-by-step explanation:
here,i'm taking k=n
let,
log₂a/4=log₂b/6=log₂c/3n=x
∴log₂a=4x;
log₂b=6x;
log₂c=3nx
write the above expresion in their exponential form
∴a=2⁴ˣ ; b=2⁶ˣ ; c=2³ⁿˣ
a³b²c=1..............given
now, substitute the value of a,b,c here
∴(2⁴ˣ)³.(2⁶ˣ)². (2³ⁿˣ)=1
∴2¹²ˣ . 2¹²ˣ .2³ⁿˣ=2°.........(∵2°=1)
∴2²⁴ˣ⁺³ⁿˣ=2⁰
base are same
∴24x+3nx=0
∴3n(8+n)=0
n= -8
Similar questions