Math, asked by cswarna2607, 1 year ago

if logb base a =10 & log (32b) base 6a=5,find the value of a

Answers

Answered by Joshtray
30
 a^{2} = b
(6a)^{5} = 32b
Therefore, 
(6a)^{5} = 32 a^{10}
 6^{5} =  2^{5}  a^{5}
2a=6
a=3
Answered by abhi178
15
log (b base a)=10

=> log{ (32b) base6a}=5
=> log32b/log6a=5
=> log32b=5log6a
=> log32b=5log6a
=>log32+logb=5log6+5loga
=>5log2-5log6=5loga-logb
=> 5log2-5log2-5log3=5loga-logb
=> 5log3=logb-5loga
=> 5log3=logb-loga - 4loga
=> 5log3=log (b base a) -4loga
=> 5log3-10=-4loga
=> 10-5log3=4loga
=>(10-5log3)/4=loga
=> a=10^{(10-5log3)/4 }

here 5log3 have base 10
Similar questions