if m=1+√2 then the value of m⁴-(1/m⁴) is
Answers
Answered by
0
Step-by-step explanation:
M = 1+√2
1/m = 1/1+√2
= 1/(1+√2) × (1-√2)/(1-√2)
= 1-√2/(1²-√2²)
= 1-√2/(1-2)
= 1-√2/-1
= -(1-√2)
= √2-1
m+1/m = √2+1+√2-1
= 2√2
m²+1/m² = (m+1/m)²-2(m)(1/m)
= (2√2)²-2
= 4(2)-2 = 8-2 = 6
m²-1/m² = (√2+1)² - (√2-1)²
= {√2²+1²+2(√2)(1)} - {√2²+1²-2(√2)(1)}
= {2+1+2√2}-{2+1-2√2}
= {3+2√2} - {3-2√2}
= 3+2√2-3+2√2
= 4√2
m⁴-1/m⁴ =
= (m²-1/m²)(m²+1/m²)
=4√2*6
=24√2
Similar questions