Math, asked by adnanhussain8862, 1 year ago

If m+ (1/m-2) = 4 find out (m-2) ^2 +1/(m-2) ^2 = ?

Answers

Answered by Sharad001
89

Question :-

 \sf{if \:  \: (m  - 2)+  \frac{1}{(m - 2)} = 4} \\ \sf{ then \: find \: the \: value \: of \: } \\   \sf{{(m - 2)}^{2}   +  \frac{1}{ {(m - 2)}^{2} }  } \\

Answer :-

 \red{\boxed{ \sf{ {(m - 2)}^{2}  +  \frac{1}{ {(m - 2)}^{2} }  = 14}}} \:

Formula used :-

 \rightarrow \:   \boxed{\sf{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

Solution :-

According to the question,

 \rightarrow \: \sf{ (m - 2) +  \frac{1}{(m - 2)}  = 4 }\\

Squaring on both sides,

 \rightarrow \:   \small \sf{{ \bigg((m - 2) +  \frac{1}{(m - 2)}  \bigg)}^{2}  =  {(4)}^{2} } \\  \\    \red{\bf{using \: the \: given \: formula \: } }\\  \\  \rightarrow  \small   \sf{{(m - 2)}^{2}  +  \frac{1}{ {(m - 2)}^{2} }  + 2 \times (m - 2)  \frac{1}{(m -  2)}  = 16 }\\  \\  \rightarrow \:  \sf{ \small {(m - 2)}^{2}  +  \frac{1}{ {(m - 2)}^{2} }  + 2 = 16 }\\  \\  \rightarrow \boxed{ \sf{ {(m - 2)}^{2}  +  \frac{1}{ {(m - 2)}^{2} }  = 14}}

Similar questions