Math, asked by firozkhanbwn562, 8 months ago

if m+1/m=√3, find m^6-1/m^6
please answer it quickly.. it's urgent and please answer it correctly ! I will mark it brainliest.. hurry up please​

Answers

Answered by sanjay7135271
0

Step-by-step explanation:

for equal roots D=b

2

−4ac=0

⇒[2(m+1)]

2

−4m(3m+1)=0

⇒m

2

+2m+1−3m

2

−m=0

⇒−2m

2

+m+1=0

⇒2m

2

−m−1=0⇒(m−1)(m+

2

1

)=0

m=1,

2

−1

solution

I hope it helps you

Attachments:
Answered by KaurSukhvir
3

Answer:

The value of   m^{6}-\frac{1}{m^{6}}   is equal to zero.

Step-by-step explanation:

Given expression is:  m^{6}-\frac{1}{m^{6}}                            .............(1)

and m+\frac{1}{m}=\sqrt{3}

Consider that,  (m+\frac{1}{m})=k

Then (m+\frac{1}{m})^{3}=k^{3}

We know that  (a+b)^{3}=a^{3}+b^{3}+3ab(a+b)

Therefore,  m^{3}+\frac{1}{m^{3}}+3(m)(\frac{1}{m})(m+\frac{1}{m})=k^{3}

⇒   m^{3}+\frac{1}{m^{3}}+3k=k^{3}                                         ................(2)

We have given (m+\frac{1}{m})=\sqrt{3} =k put in eq.(2):

⇒    m^{3}+\frac{1}{m^{3}}+3(\sqrt{3} )=(\sqrt{3}) ^{3}

⇒    m^{3}+\frac{1}{m^{3}}=3(\sqrt{3} )-3(\sqrt{3} )

⇒    m^{3}+\frac{1}{m^{3}}=0

Now, multiple with m^{3} on both sides;

⇒   m^{6}+1=0

∴    m^{6}=-1

Put the value of m⁶ in eq.(1);

m^{6}-\frac{1}{m^{6}}=(-1)-\frac{1}{(-1)}

m^{6}-\frac{1}{m^{6}}=-1+1

m^{6}-\frac{1}{m^{6}}=0

Similar questions