Math, asked by Alexnor, 8 months ago

If m-1/m = p-2 then, prove that m²+1/m² = p²-4p+6 ​

Answers

Answered by anindyaadhikari13
3

\star\:\:\:\bf\large\underline\blue{Question:-}

  • If m-\frac{1}{m}=p-2, then prove that m^{2}+\frac{1}{m^{2}}=p^{2}-4p+6

\star\:\:\:\bf\large\underline\blue{Proof:-}

Given that,

m -  \frac{1}{m} = p - 2

Squaring both side, we get,

(m -  \frac{1}{m})^{2} =( p - 2)^{2}

 \implies {m}^{2}  +  \frac{1}{ {m}^{2} }  - 2 \times  \cancel{m} \times  \frac{1}{ \cancel{m}}  =  {p}^{2}  - 2 \times p \times 2 +  {2}^{2}

 \implies {m}^{2}  +  \frac{1}{ {m}^{2} }  - 2=  {p}^{2}    - 4p + 4

 \implies {m}^{2}  +  \frac{1}{ {m}^{2} }  =  {p}^{2}    - 4p + 4 + 2

 \implies {m}^{2}  +  \frac{1}{ {m}^{2} }  =  {p}^{2}    - 4p +6

\star\:\:\:\bf\large\underline\blue{Hence\:Proved.}

Answered by mysticd
4

 Given \: m - \frac{1}{m} = p - 2 \: ---(1)

/* On squaring both sides of the equation,we get*/

 \implies \Big(m - \frac{1}{m} \Big)^{2} = ( p - 2)^{2}

 \implies m^{2} + \frac{1}{m^{2}} - 2 \times m \times \frac{1}{m} = p^{2} - 2 \times p \times 2 + 2^{2}

 \implies m^{2} + \frac{1}{m^{2}} - 2= p^{2} - 4p + 4

 \implies m^{2} + \frac{1}{m^{2}} = p^{2} - 4p + 4+2

 \implies \green {m^{2} + \frac{1}{m^{2}} = p^{2} - 4p + 6  }

 Hence\: Proved

•••♪

Similar questions