if m^2 + 1/m^2 = 34 find m^3 + 1/m^3
Answers
Answered by
2
Answer:
m^2+1/m^2=34
=> (m+1/m)^2-2.m.1/m=34
=> (m+1/m)^2-2=34
=> (m+1/m)^2=34+2
=> (m+1/m)^2=36
=> (m+1/m)=6
m^3+1/m^3
=(m+1/m)^3-3.m.1/m(m+1/m)
=(6)^3-3(6)
=216-18
=198
Answered by
0
Answer:
m^2 + 1/m^2 = 34
Step-by-step explanation:
(m + 1/m)^2 = (m^2 + 1/m^2 ) - 2 = 34 - 2
(m + 1/m)^2 = 32
m + 1/m = 4root(2)
m^3 + 1/m^3 = (m + 1/m)(m^2 + 1/m^2 - 2(m)(1/m))
m^3 + 1/m^3 =(4root(2))(34 - 2) = (4root(2))(32)
m^3 + 1/m^3 = 64root(2)
Used Formula
a^3 + b^3 = (a + b)(a^2 + b^2 - ab)
Similar questions