Math, asked by akashsamal1054, 2 months ago

if m^2 + 1/m^2 = 34 find m^3 + 1/m^3

Answers

Answered by bagkakali
2

Answer:

m^2+1/m^2=34

=> (m+1/m)^2-2.m.1/m=34

=> (m+1/m)^2-2=34

=> (m+1/m)^2=34+2

=> (m+1/m)^2=36

=> (m+1/m)=6

m^3+1/m^3

=(m+1/m)^3-3.m.1/m(m+1/m)

=(6)^3-3(6)

=216-18

=198

Answered by saireddy461
0

Answer:

m^2 + 1/m^2 = 34

Step-by-step explanation:

(m + 1/m)^2 = (m^2 + 1/m^2 ) - 2 = 34 - 2

(m + 1/m)^2 = 32

m + 1/m = 4root(2)

m^3 + 1/m^3 = (m + 1/m)(m^2 + 1/m^2 - 2(m)(1/m))

m^3 + 1/m^3 =(4root(2))(34 - 2) = (4root(2))(32)

m^3 + 1/m^3 = 64root(2)

Used Formula

a^3 + b^3 = (a + b)(a^2 + b^2 - ab)

Similar questions