Math, asked by BaibhavLabh, 3 months ago

If (m^2+n^2) sinθ = 2mn, then prove that cosθ = m^2+n^2/m^2-n^2

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\: ({m}^{2} +  {n}^{2})sin\theta = 2mn

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:cos\theta = \dfrac{ {m}^{2} -  {n}^{2}  }{ {m}^{2} +  {n}^{2}  }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \red{\bf{ {sin}^{2}x +  {cos}^{2}x = 1}}}

\boxed{ \red{\bf{ {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}}

\boxed{ \red{\bf{ {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}}

\huge\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: ({m}^{2} +  {n}^{2})sin\theta = 2mn

\rm :\implies\:sin\theta = \dfrac{2mn}{ {m}^{2} +  {n}^{2}  }

We know,

\rm :\longmapsto\: {sin}^{2}\theta +  {cos}^{2}\theta = 1

\rm :\longmapsto\: {cos}^{2}\theta = 1 -  {sin}^{2}\theta

On substituting the value, we get

\rm :\longmapsto\: {cos}^{2}\theta = 1 -  {\bigg(\dfrac{2mn}{ {m}^{2} +  {n}^{2}  }  \bigg) }^{2}

\rm :\longmapsto\: {cos}^{2}\theta = 1 - \dfrac{4 {m}^{2} {n}^{2}}{ {m}^{4} +  {n}^{4} + 2 {m}^{2} {n}^{2}  }

\rm :\longmapsto\: {cos}^{2}\theta = \dfrac{ {m}^{4}  +  {n}^{4} + 2 {m}^{2} {n}^{2}  - 4 {m}^{2} {n}^{2}}{ {m}^{4} +  {n}^{4} + 2 {m}^{2} {n}^{2}  }

\rm :\longmapsto\: {cos}^{2}\theta = \dfrac{ {m}^{4}  +  {n}^{4}  -  2 {m}^{2} {n}^{2}}{ {m}^{4} +  {n}^{4} + 2 {m}^{2} {n}^{2}  }

\rm :\longmapsto\: {cos}^{2}\theta = \dfrac{ {( {m}^{2} -  {n}^{2})}^{2} }{ {( {m}^{2} +  {n}^{2}) }^{2} }

\bf\implies \:cos\theta = \dfrac{ {m}^{2} -  {n}^{2}}{ {m}^{2} +  {n}^{2}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions