If (m-5)+ i(n+4) is complex conjugate of (2m+ 3) i (3n+2) then (n,m) are
Answers
Answered by
1
Answer:
Given (m−5)+i(n+4) is the complex conjugate of (2m+3)+i(3n−2).
∴(m−5)+i(n+4)=(2m+3)−i(3n−2)
Equating the real and imaginary parts we get
m−5=2m+3 and n+4=−(3n−2)
⇒m=−8and4n=−2
⇒m=−8andn=−
2
1
Hence (n,m)=(−
2
1
,−8).
Answered by
1
Answer:
Step-by-step explanation:
Given (m−5)+i(n+4) is the complex conjugate of (2m+3)+i(3n−2).
∴(m−5)+i(n+4)=(2m+3)−i(3n−2)
Equating the real and imaginary parts we get
m−5=2m+3 and n+4=−(3n−2)
⇒m=−8and4n=−2
⇒m=−8and n=− 2 1
Hence (n,m)=(− 2 1 ,−8).
Similar questions