If m=7777.....777 is a 99 digit number and n=999......999 is a 77 digit number, then the sum of digits in the product of m×n
Answers
sum of the digits in n=77×9=693
m×n=693×693=4702495
Qⁿ :If m=7777.....777 is a 99 digit number and n=999......999 is a 77 digit number, then the sum of digits in the product of m×n
solⁿ: m x n = (777...777) (999...999)
99 digits 77digits
10² - 1 = 99
10³ - 1 = 999
10⁴ - 1 = 9999
10⁷⁷ - 1 = 999..99
(777...777) (10⁷⁷ - 1)
(777...777)(10⁷⁷) - 7777...777
(777...777 0000 ...000) - ( 777...777)
7777...777 00000..00
7777....77(99)
subtracting we get :
(7777) ( 6) (99...999) (222..222) (3)
76digits 22digits 1digit 76digits 1digit
sum of the digits
(76 x 7) + (1 x 6 ) + (22 x 9) + (76 x 2) + (1 x 3)
532 + 6 + 198 + 152 + 3
=891
SO , IF m = 777...777 IS A 99 DIGIT NUMBER AND n = 999...999 IS A 77 DIGIT NUMBER , THEN THE SUM OF THE DIGITS IN THE PRODUCT OF m x n IS 891
solⁿ by aswin