if m=(cos theta-sin theta) and n=(cos theta+sin theta) then show that √m/n+√n/m=2/√1-tan²theta
Answers
Answered by
191
m = (cos∅ - sin∅)
n = (cos∅ + sin∅)
now, put m =( cos∅ - sin∅) and n = (cos∅ + sin∅)
= {(cos∅ - sin∅)+(cos∅ + sin∅)}/√{cos∅-sin∅)(cos∅+sin∅)}
= 2cos∅/√{cos²∅ - sin²∅}
= 2/√{cos²∅/cos²∅ - sin²∅/cos²∅}
= 2/√{1 - tan²∅} = RHS
n = (cos∅ + sin∅)
now, put m =( cos∅ - sin∅) and n = (cos∅ + sin∅)
= {(cos∅ - sin∅)+(cos∅ + sin∅)}/√{cos∅-sin∅)(cos∅+sin∅)}
= 2cos∅/√{cos²∅ - sin²∅}
= 2/√{cos²∅/cos²∅ - sin²∅/cos²∅}
= 2/√{1 - tan²∅} = RHS
Answered by
68
hope it helps u and mark me good answer
Attachments:
Similar questions