Math, asked by MdMushrif, 1 year ago

if m=(cos theta-sin theta) and n=(cos theta+sin theta) then show that √m/n+√n/m=2/√1-tan²theta

Answers

Answered by abhi178
191
m = (cos∅ - sin∅)
n = (cos∅ + sin∅)

LHS = \sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}} \\  \\  =  \frac{ \sqrt{m} }{ \sqrt{n} }  +  \frac{ \sqrt{n} }{ \sqrt{m} }  \\  \\  = \frac{m + n}{ \sqrt{mn} } \\
now, put m =( cos∅ - sin∅) and n = (cos∅ + sin∅)
= {(cos∅ - sin∅)+(cos∅ + sin∅)}/√{cos∅-sin∅)(cos∅+sin∅)}
= 2cos∅/√{cos²∅ - sin²∅}
= 2/√{cos²∅/cos²∅ - sin²∅/cos²∅}
= 2/√{1 - tan²∅} = RHS
Answered by adventurer64
68
hope it helps u and mark me good answer
Attachments:
Similar questions