If m= cosA-sinA and n= cosA++sinA.show that √m/n+√n/m=2/√1-tan^A
Answers
Answered by
52
⭐⭐⭐⭐⭐ ANSWER ⭐⭐⭐⭐⭐
GIVEN, m = cosA - sinA
n = cosA + sinA
THEREFORE,
L. H. S. = √(m/n) + √(n/m)
=>√m/√n + √n/√m
=> (m+n)/√mn
Now, substituting their values, we get :-
(cosA-sinA+cosA+sinA)/√(cosA-sinA)(cosA+sinA)
=> 2 cosA / √(cos²A-sin²A)
=> 2 cosA/√cos²A(1-sin²A/cos²A)
=> 2/√(1-tan²A) [HENCE PROVED]
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
GIVEN, m = cosA - sinA
n = cosA + sinA
THEREFORE,
L. H. S. = √(m/n) + √(n/m)
=>√m/√n + √n/√m
=> (m+n)/√mn
Now, substituting their values, we get :-
(cosA-sinA+cosA+sinA)/√(cosA-sinA)(cosA+sinA)
=> 2 cosA / √(cos²A-sin²A)
=> 2 cosA/√cos²A(1-sin²A/cos²A)
=> 2/√(1-tan²A) [HENCE PROVED]
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
Answered by
3
Answer:
Your answer is Attached
Attachments:
Similar questions