Math, asked by dasshubhankar367, 8 months ago

if m/n- n/m =7/5 then solve m2/n2+n2/m2=?​

Answers

Answered by tahseen619
4

99/25

Step-by-step explanation:

Given:

 \dfrac{m}{n}  -  \dfrac{n}{m}  =  \dfrac{7}{5}

To find:

 \dfrac{ {m}^{2} }{ {n}^{2} }  +  \dfrac{ {n}^{2}}{{m}^{2}}

How to Solve ?

1) Square the given

2) Then use Formula [(a-b) ² = a²+b²- 2ab]

3) Just put the value, Simplify and get answer

Solution:

 \sf \frac{m}{n}  -  \frac{n}{m}  =  \frac{7}{5}  \\  \\  \sf \: [Squaring \: both \: side] \\  \\  {( \frac{m}{n}  -  \frac{n}{m})}^{2}  =  { (\frac{7}{5}) }^{2}  \\  \\ \sf \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} }  - 2. \frac{m}{n}. \frac{n}{m}  =  \frac{49}{25}  \\  \\  \sf \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} }  - 2. \frac{ \cancel{m}}{ \cancel{n}}. \frac{ \cancel{n}} {\cancel{m}}  =  \frac{49}{25}  \\  \\  \sf \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} }  - 2 =  \frac{49}{25}  \\  \\  \sf \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} } =  \frac{49}{25}  + 2 \\  \\ \sf   \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} } =  \frac{49 + 50}{25}  \\  \\   \sf  \frac{ {m}^{2} }{ {n}^{2} }  +  \frac{ {n}^{2} }{ {m}^{2} }  \: =  \frac{99}{25}   \\  \\  \sf \therefore \: Our \: required \: answer \: is \:  \:  \frac{ {m}^{2} }{ {n}^{2} }  +   \frac{ {n}^{2} }{ {m}^{2} }  =  \frac{99}{25}

Similar questions