Math, asked by swi15, 24 days ago

if m+n+p = 17 and mn+np+pm= 125, then find the value of m^(3) + n^(3) + p^(3) -3mnp

Answers

Answered by ItzBrainlyLords
2

Given :

  • m + n + p = 17

  • mn + np + pm

To Find :

Value of

  • m³ + n³ + p³ - 3mnp

Here,

a³ + b³ + c³ - 3abc = m³ + n³ + p³ - 3mnp

 \:  \:  \:  \large \rm \:  \therefore \:  \: statisfies \:  \: identity : \\

Identity :

  • a³ + b³ + c³ - 3abc

= (a + b + c)(a² + b² + c² - ab - bc - ca)

⇒ m³ + n³ + p³

= (m + n + p)(m² + n² + p² - mn - np - pm)

  • Putting Values

 \large \rm \implies \: 17[{m}^{2}  +  {n}^{2}  +  {p}^{2}  - (mn + np + pm)] \\  \\  \large \rm \implies \: 17[{m}^{2}  +  {n}^{2}  +  {p}^{2}  - 125] \\  \\

Answered by mkesar54
0

Step-by-step explanation:

Given :

m + n + p = 17

mn + np + pm

To Find :

Value of

m³ + n³ + p³ - 3mnp

Here,

a³ + b³ + c³ - 3abc = m³ + n³ + p³ - 3mnp

\begin{gathered} \: \: \: \large \rm \: \therefore \: \: statisfies \: \: identity : \\ \end{gathered}

∴statisfiesidentity:

Identity :

a³ + b³ + c³ - 3abc

= (a + b + c)(a² + b² + c² - ab - bc - ca)

⇒ m³ + n³ + p³

= (m + n + p)(m² + n² + p² - mn - np - pm)

Putting Values

\begin{gathered} \large \rm \implies \: 17[{m}^{2} + {n}^{2} + {p}^{2} - (mn + np + pm)] \\ \\ \large \rm \implies \: 17[{m}^{2} + {n}^{2} + {p}^{2} - 125] \\ \\ \end{gathered}

⟹17[m

2

+n

2

+p

2

−(mn+np+pm)]

⟹17[m

2

+n

2

+p

2

−125]

Similar questions