if m sin theta+r cos theta=p and m cos theta-n sin theta=q,then prove that m^2+n^2=p^2+p^2
Answers
Answered by
4
msin$ +ncos$ = p ...(1)
msin$ -ncos$ = q ...(2)
squaring eq.1&2 then add
m²(sin²$+cos²$)+n²(sin²$+cos²$)=p²+q²
m² + n² = p² + q²
msin$ -ncos$ = q ...(2)
squaring eq.1&2 then add
m²(sin²$+cos²$)+n²(sin²$+cos²$)=p²+q²
m² + n² = p² + q²
Answered by
7
Answer:
Step-by-step explanation: Please find in the attachment...
HOPE IT HELPS!!!
Attachments:
Similar questions