Math, asked by rahul3286019, 1 year ago

if m=sina+cosa and n=sina-cosa then find m^2-n^2

Answers

Answered by abhi569
3
m = sinA + cosA


Square on both sides,

=> m² = ( sinA + cosA )²

 \mathbf{ => m ^{2} = sin ^{2} A + cos ^{2} A + 2sinAcosA} \: \: \: \: \: \: \: \: \: \: \: \: \: \: ...(i)



And,

n = sinA - cosA


Square on both sides,

=> n² = ( sinA - cosA )²

 \mathbf{=> n ^{2} = sin ^{2} A + cos ^{2} A - 2sinAcosA} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ...(ii)



Then,

m² - n²

=> sin²A + cos²A + 2sinAcosA - sin²A - cos²A + 2sinAcosA

=> 4sinAcosA

rahul3286019: i want answer in "m and n"
abhi569: It cant be
abhi569: In m and n, Answer : ( m + n ) ( m - n )
Answered by Panzer786
7
Heya !!



m = Sin A + Cos A


n = Sin A - Cos A





m² - n²


=> ( SinA + Cos A )² - ( Cos A - Sin A )²




=> 4 Sin A Cos A [Since ( a +b )² - ( a - b)² = 4ab]

rahul3286019: ty dear
Similar questions