if m=sina+cosa and n=sina-cosa then find m^2-n^2
Answers
Answered by
3
m = sinA + cosA
Square on both sides,
=> m² = ( sinA + cosA )²
And,
n = sinA - cosA
Square on both sides,
=> n² = ( sinA - cosA )²
Then,
m² - n²
=> sin²A + cos²A + 2sinAcosA - sin²A - cos²A + 2sinAcosA
=> 4sinAcosA
Square on both sides,
=> m² = ( sinA + cosA )²
And,
n = sinA - cosA
Square on both sides,
=> n² = ( sinA - cosA )²
Then,
m² - n²
=> sin²A + cos²A + 2sinAcosA - sin²A - cos²A + 2sinAcosA
=> 4sinAcosA
rahul3286019:
i want answer in "m and n"
Answered by
7
Heya !!
m = Sin A + Cos A
n = Sin A - Cos A
m² - n²
=> ( SinA + Cos A )² - ( Cos A - Sin A )²
=> 4 Sin A Cos A [Since ( a +b )² - ( a - b)² = 4ab]
m = Sin A + Cos A
n = Sin A - Cos A
m² - n²
=> ( SinA + Cos A )² - ( Cos A - Sin A )²
=> 4 Sin A Cos A [Since ( a +b )² - ( a - b)² = 4ab]
Similar questions