if m=tanθ+sinθ, tanθ-sinθ=n and m ≠n then prove that m²-n²=4√mn
Answers
Answered by
2
tanA+sinA=m and tanA-sinA
m squre-n squre =4√mn
taking LHS
m squre-n squre
(m+n) (m-n)
(tanA+sinA+tanA-sinA )(tanA+sinA-tan+sinA)
(2tanA)(2sinA)
4tanAsinA
taking RHS
4√mn
4√(tanA+sinA)(tanA-sinA)
4√tan squreA-sin squreA
4√sin squreA\cos squreA-sin squreA
4√(sin squreA- cos squreA- sin squreA)\cos squreA
4√sin squre(1/cos squreA-1)
4√sin squreA×tan squreA
4sinA tanA
LHS=RHS
m squre-n squre =4√mn
taking LHS
m squre-n squre
(m+n) (m-n)
(tanA+sinA+tanA-sinA )(tanA+sinA-tan+sinA)
(2tanA)(2sinA)
4tanAsinA
taking RHS
4√mn
4√(tanA+sinA)(tanA-sinA)
4√tan squreA-sin squreA
4√sin squreA\cos squreA-sin squreA
4√(sin squreA- cos squreA- sin squreA)\cos squreA
4√sin squre(1/cos squreA-1)
4√sin squreA×tan squreA
4sinA tanA
LHS=RHS
Attachments:
Answered by
2
Answer:
Step-by-step explanation:
tanθ+sinθ=m and tanθ-sinθ=n
∴, m²-n²
=(m+n)(m-n)
=(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)
=(2tanθ)(2sinθ)
=4tanθsinθ
4√mn
=4√(tanθ+sinθ)(tanθ-sinθ)
=4√(tan²θ-sin²θ)
=4√{(sin²θ/cos²θ)-sin²θ}
=4√sin²θ{(1/cos²θ)-1}
=4sinθ√{(1-cos²θ)/cos²θ}
=4sinθ√(sin²θ/cos²θ)
=4sinθ√tan²θ
=4sinθtanθ
∴, LHS=RHS (Proved)
Similar questions