Math, asked by yashikachainani76, 1 year ago

if m tan (theta - 30 degree ) = ntan ( theta plus 120 degree ) show that cos 2 theta = m+n divided by 2(m-n)

Answers

Answered by mathdude200
111
apply the process of componendo and dividendo
Attachments:
Answered by FelisFelis
37

Answer:

If mtan(\theta-30\degree)=ntan(\theta+120\degree)

Show that :  cos2\theta=\frac{m+n}{2(m-n)}

We take right hand side and will show equal to left hand side

R.H.S

\frac{m+n}{2(m-n)}

Since, m tan(\theta-30\degree)=n tan(\theta+120\degree)

divide both the sides by ntan(\theta-30\degree)

\frac{m}{n}=\frac{ntan(\theta+120\degree)}{ntan(\theta-30\degree)}

\frac{m}{n}=\frac{tan(\theta+120\degree)}{tan(\theta-30\degree)}

Let \theta+120=A and \theta-30=B

\frac{m}{n}=\frac{tanA}{tanB}

comparing both sides we get value of m and n

m=tanA and n=tanB

put the value of m  and n in \frac{m+n}{2(m-n)}

\frac{tanA+tanB}{2(tanA-tanB)}

\frac{\frac{sinA}{cosA}+\frac{sinB}{cosB}}{2(\frac{sinA}{cosA}-\frac{sinB}{cosB})}

\frac{sinAcosB+sinBcosA}{2(cosBsinA-sinBcosA)}

\frac{sin(A+B)}{2(sin(A-B))}

\frac{sin(\theta+120-\theta-30)}{2(sin(\theta+120-\theta+30))}

\frac{sin(90+2\theta)}{2(sin(150))}

\frac{cos2\theta}{2(sin(180-30))}

\frac{cos2\theta}{2(sin30)}

\frac{cos2\theta}{2(\frac{1}{2})}

cos2\theta

=R.H.S

Hence proved

Similar questions