If m times the mth term of an AP is equal to the n times nth term then show that the (m + n ) th term of the AP is zero
Answers
Answered by
3
tn=a+(n-1)d
=a+(m-1)d
tm =a+md-d. .............(1)
-a+d=md
tn=a+(n-1)d
=a+nd-d. ........(2)
-a+d=nd
from equ 1and2
nd=md
a+md-d+a+nd-d=0. (given)
sharvarisonone8945:
Thx
Answered by
2
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions