Math, asked by sharvarisonone8945, 1 year ago

If m times the mth term of an AP is equal to the n times nth term then show that the (m + n ) th term of the AP is zero

Answers

Answered by pratiksk7
3

tn=a+(n-1)d

=a+(m-1)d

tm =a+md-d. .............(1)

-a+d=md

tn=a+(n-1)d

=a+nd-d. ........(2)

-a+d=nd

from equ 1and2

nd=md

a+md-d+a+nd-d=0. (given)


sharvarisonone8945: Thx
pratiksk7: OK
Answered by sanyamshruti
2

Answer:

Let the first term of AP = a

common difference = d

We have to show that (m+n)th term is zero or a + (m+n-1)d = 0

mth term = a + (m-1)d

nth term = a + (n-1) d

Given that m{a +(m-1)d} = n{a + (n -1)d}

⇒ am + m²d -md = an + n²d - nd

⇒ am - an + m²d - n²d -md + nd = 0

⇒ a(m-n) + (m²-n²)d - (m-n)d = 0

⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0

⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0

⇒ a(m-n)  + (m-n)(m+n -1) d  = 0

⇒ (m-n){a + (m+n-1)d} = 0 

⇒ a + (m+n -1)d = 0/(m-n)

⇒ a + (m+n -1)d = 0

Proved!

Similar questions