Math, asked by venkatmbaignou, 1 year ago

If median is 48 and cf is 229 find the 2 missing frequencies
CI Frequencies
10-20 12
20-30 30
30-40 f1
40-50 65
50-60 f2
60-70 25
70-80 18

Answers

Answered by vikashjaiswal5935
9

Solution:

The given question is incorrect.

The correct question : If median is 48 and cf is 230 find the 2 missing frequencies  

CI Frequencies  :

10-20 12

20-30 30

30-40 f1

40-50 65

50-60 f2

60-70 25

70-80 18 .

Class interval   Frequency (f)  Cumulative frequency (CF)

10-20                  12                       12

20-30                 30                       42

30-40                   f1                       42+f1

40-50                  65                        107+f1

50-60                   f2                        107+f1+f2

60-70                     25                     132+f1+f2

70-80                  18                          150+f1+f2

We have, Median = 46 , it lies between the class interval  40-50 , so that 40-50 is the median

∴ l = 40, h = 10, f = 42+f1 and N = 230

now, we know that Median =  

l+  ( 4/2-F)/(f )×h

46 = 40+((230/2-42-f1))/(65 )  ×100

3 = ((73-f1))/13

Therefore f1 = 34

now,  f1 = 34 we have , N = 230

therefore 150+f1+f2 = 230 therefore

f2 = 46

hence the missing terms f1 and f2 are 34 and 46 .

Answered by amitnrw
8

If median is 48 and cf is 229 find the 2 missing frequencies

CI Frequencies

10-20 12 12

20-30 30 42

30-40 f1 42+f1

40-50 65 107+f1

50-60 f2 107+f1+f2

60-70 25 132+ f1+f2

70-80 18 150+f1+f2

cumulative frequency = 150+f1+f2 = 229

=> f1+f2 = 79

median given = 48

48 is in between 40-50

frequency of 40-50 = 65

cf for 30-40 = 42+f1

Estimated Median = L + { ( (n/2) − B)/ G}× w

L = 40 n = 229 B = 42+f1 G =65 w = 10

48 = 40 + {((229/2) - (42 +f1))/65}×10

=>8 ×65/10 = 114.5 - 42 - f1

=> 52 = 72.5 - f1

=> f1 = 72.5 - 52

=> f1 = 20.5

=> f1 = 21

f1 + f2 = 79

f2 = 79 -21 = 58

Similar questions