Chemistry, asked by utkarshsingh5671, 4 months ago

IF molar conductance at infinite dilution of (NH4)2SO4 , NaOH , AND Na2SO4 SOLUTION are X1 , X2 AND X3 respectively , then molar conductance of NH4OH SOLUTION IS : ​

Answers

Answered by zapy6102002
7

Answer:

x1+x2-x3

Explanation:

Answered by swethassynergy
3

The molar conductance of ammonium hydroxideNH_4OH is \frac{X_1 + 2X_2 - X_3}{2}

Explanation:

Given: The molar conductance of

  • (NH_4)_2SO_4=X_1
  • NaOH = X_2
  • Na_2SO_4 =X_3

Using Kohlrausch's law, the above can be written as:

  1. \Lambda_{(NH_4)_2SO_4} = 2\lambda_{(NH_4^+)} +\lambda_{(SO_4^{2-})} = X_1
  2. \Lambda_{NaOH} = \lambda_{(Na^+)} +\lambda_{(OH^-)} = X_2
  3. \Lambda_{Na_2SO_4} = 2\lambda_{(Na^+)} +\lambda_{(SO_4^{2-})} = X_3

To find: The molar conductance of NH_4OH (\Lambda_{NH_4OH} = \lambda_{(NH_4^+)} +\lambda_{(OH^-)})

Solution:

  • Multiplying equation 2 by 2

(\lambda_{(Na^+)} +\lambda_{(OH^-)} = X_2)\times 2

2\lambda_{(Na^+)} +2\lambda_{(OH^-)} = 2X_2

  • Now adding with equation 1

2\lambda_{(Na^+)} +2\lambda_{(OH^-)} = 2X_2  + 2\lambda_{(NH_4^+)} +\lambda_{(SO_4^{2-})} = X_1

2\lambda_{(Na^+)} +2\lambda_{(OH^-)} + 2\lambda_{(NH_4^+)} +\lambda_{(SO_4^{2-})} = X_1 + 2X_2

  • Now subtracting equation 3 from the sum, we get,

(2\lambda_{(Na^+)} +2\lambda_{(OH^-)} + 2\lambda_{(NH_4^+)} +\lambda_{(SO_4^{2-})} = X_1 + 2X_2) - (2\lambda_{(Na^+)} +\lambda_{(SO_4^{2-})} = X_3)

2\lambda_{(Na^+)} +2\lambda_{(OH^-)} + 2\lambda_{(NH_4^+)} +\lambda_{(SO_4^{2-})} - 2\lambda_{(Na^+)} -\lambda_{(SO_4^{2-})} = X_1 + 2X_2 - X_3

Canceling out the common terms

2\lambda_{(OH^-)} + 2\lambda_{(NH_4^+)}  = X_1 + 2X_2 - X_3

Taking out 2

2(\lambda_{(OH^-)} + \lambda_{(NH_4^+)})  = X_1 + 2X_2 - X_3

Thus, the molar conductance for ammonium hydroxide, NH_4OH becomes

\lambda_{(OH^-)} + \lambda_{(NH_4^+)} = \frac{X_1 + 2X_2 - X_3}{2}

Hence, the molar conductance of ammonium hydroxide is \frac{X_1 + 2X_2 - X_3}{2}

Similar questions