If MX+NY=m+n, then prove that m(1/m-n-1/m+n) x+n(1/n-m-1/m+n) y=2m/m+n
Answers
Answered by
1
Let mx − ny = m2 + n2 → (1)
x − y = 2n
Multiply above equation with n, we get
nx − ny = 2n2 → (2)
subtract (2) from (1)
mx − ny = m2 + n2
nx − ny = 2n2
− + −
(m − n)x = m2 − n2
⇒ (m − n)x = (m − n)(m + n)
∴ x = (m + n)
Put x = (m + n) in x − y = 2n
⇒ (m + n) − y = 2n
⇒ (m + n) − 2n = y
∴ y = (m − n)
Let mx − ny = m2 + n2 → (1)
x − y = 2n
Multiply above equation with n, we get
nx − ny = 2n2 → (2)
subtract (2) from (1)
mx − ny = m2 + n2
nx − ny = 2n2
− + −
(m − n)x = m2 − n2
⇒ (m − n)x = (m − n)(m + n)
∴ x = (m + n)
Put x = (m + n) in x − y = 2n
⇒ (m + n) − y = 2n
⇒ (m + n) − 2n = y
∴ y = (m − n)
x − y = 2n
Multiply above equation with n, we get
nx − ny = 2n2 → (2)
subtract (2) from (1)
mx − ny = m2 + n2
nx − ny = 2n2
− + −
(m − n)x = m2 − n2
⇒ (m − n)x = (m − n)(m + n)
∴ x = (m + n)
Put x = (m + n) in x − y = 2n
⇒ (m + n) − y = 2n
⇒ (m + n) − 2n = y
∴ y = (m − n)
Let mx − ny = m2 + n2 → (1)
x − y = 2n
Multiply above equation with n, we get
nx − ny = 2n2 → (2)
subtract (2) from (1)
mx − ny = m2 + n2
nx − ny = 2n2
− + −
(m − n)x = m2 − n2
⇒ (m − n)x = (m − n)(m + n)
∴ x = (m + n)
Put x = (m + n) in x − y = 2n
⇒ (m + n) − y = 2n
⇒ (m + n) − 2n = y
∴ y = (m − n)
Similar questions
Computer Science,
8 months ago
Biology,
8 months ago
Social Sciences,
1 year ago
Physics,
1 year ago
Economy,
1 year ago