If n( ) = 50, n(A)=15, n(B)=13 and n(A∩B)=10, find n(A1
), n(B1
) and n(AUB).
Answers
Answer:
9
93x
93x 2
93x 2 +ax−2=0
93x 2 +ax−2=0Since, one root is 1, then x=1
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1)
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a)
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1)
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1) 2
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1) 2 +4(−1)b=0 [ Substituting a=−1 ]
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1) 2 +4(−1)b=0 [ Substituting a=−1 ]⇒ 36−4b=0
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1) 2 +4(−1)b=0 [ Substituting a=−1 ]⇒ 36−4b=0⇒ 4b=36
93x 2 +ax−2=0Since, one root is 1, then x=1⇒ 3(1) 2 +a(1)−2=0⇒ 3+a−2=0⇒ a+1=0⇒ a=−1⇒ Now, it is given that ax 2 +6ax−b=0 has equal roots.∴ b 2 −4ac=0⇒ (6a) 2 −4(a)(−b)=0⇒ 36a 2 +4ab=0⇒ 36(−1) 2 +4(−1)b=0 [ Substituting a=−1 ]⇒ 36−4b=0⇒ 4b=36∴ b=9