Math, asked by estherbara2008, 1 month ago

if n(u)=30,n(a') =14,n(b)=20,and
n(aΠb) =11,
then find (i) n(b') (II) n(aub)​

Answers

Answered by kushma10289
0

Answer:

† Question :-

Find out the value of :- cos²10° + cos²20° + cos²30° + cos²40° + cos²50° + cos²60° + cos²70° + cos²80° + cos²90°.

\large \dag† Answer :-

\begin{gathered}\red\dashrightarrow\underline{\underline{\sf \green{The \: Value \: of \: given \: expression \: is \: 4}} }\\ \end{gathered}

The Value of given expression is 4

\large \dag† Step by step Explanation :-

⇝ We Know that ;

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{ cos \pmb\theta = sin(90 \degree -\pmb\theta) }}}★

cos

θ

θ=sin(90°−

θ

θ)

From the above formula we get :

\begin{gathered} {\rm\large \boxed{\boxed{\begin{array}{cc} \rm ▪\: \: cos80 \degree = sin10\degree \\ \\ \rm▪\: \: cos70 \degree = sin20\degree \\ \\ \rm ▪\: \: cos60 \degree = sin30\degree \\ \\ \rm ▪\: \: cos50 \degree = sin40\degree\end{array}}}}^{ \Large \blue \bigstar \green \bigstar} \end{gathered}

▪cos80°=sin10°

▪cos70°=sin20°

▪cos60°=sin30°

▪cos50°=sin40°

★★

Now we have to calculate :

\begin{gathered}\rm {cos}^{2}10 \degree + {cos}^{2}20 \degree + {cos}^{2}30 \degree \\ + \rm \: {cos}^{2}40 \degree + {cos}^{2}50 \degree + {cos}^{2}60 \degree \\ + \: \rm {cos}^{2}70 \degree + {cos}^{2}80 \degree + {cos}^{2}90 \degree \\ \\ \end{gathered}

cos

2

10°+cos

2

20°+cos

2

30°

+cos

2

40°+cos

2

50°+cos

2

60°

+cos

2

70°+cos

2

80°+cos

2

90°

✧ Using above given table ;

\begin{gathered}=\rm {cos}^{2}10 \degree + {cos}^{2}20 \degree + {cos}^{2}30 \degree \\ + \rm \: {cos}^{2}40 \degree + {sin}^{2}40 \degree + {sin}^{2}30 \degree \\ + \rm \: {sin}^{2}20 \degree + {sin}^{2}10 \degree + {cos}^{2} 90 \degree \\ \\ \end{gathered}

=cos

2

10°+cos

2

20°+cos

2

30°

+cos

2

40°+sin

2

40°+sin

2

30°

+sin

2

20°+sin

2

10°+cos

2

90°

\begin{gathered} \rm = ( cos {}^{2} 10 \degree + {sin}^{2} 10 \degree) + ( cos {}^{2} 20 \degree + {sin}^{2} 20 \degree) \\ \rm + \: ( cos {}^{2} 30 \degree + {sin}^{2} 30 \degree) + ( cos {}^{2} 40 \degree + {sin}^{2} 40 \degree) \\ + \cos {}^{2}90 \degree \: \: \: - - - - (1) \\ \\ \end{gathered}

=(cos

2

10°+sin

2

10°)+(cos

2

20°+sin

2

20°)

+(cos

2

30°+sin

2

30°)+(cos

2

40°+sin

2

40°)

+cos

2

90°−−−−(1)

\begin{gathered}\green\dashrightarrow\underline{\underline{\sf \red{ As \: [{sin}^{2} \theta + cos {}^{2} \theta =1] \: and \: [cos90 \degree = 0] }} }\\ \end{gathered}

As[sin

2

θ+cos

2

θ=1]and[cos90°=0]

Therefore,

\begin{gathered} \rm expression \: (1) = 1 + 1 + 1 + 1 + 0 \\ \end{gathered}

expression(1)=1+1+1+1+0

\Large \red {\underline{\purple { = \underline{ \: 4 \: }}}}

=

4

So,

\Large \green \dashrightarrow\underline{\pink{\underline{\frak{\pmb{\text The \:\text Ans \text wer \: is \: 4 }}}}}⇢

TheAnsweris4

TheAnsweris4

Answered by rakeshkumar993153
0

Step-by-step explanation:

PLEASE MAKE ME BRAINLIST

Attachments:
Similar questions