If nC12=nC13, then find the value of 25Cn. (i)2 (ii)100 (iii)1 (iv)3
Answers
Answered by
4
Answer:
n!/10!(n-10)!=n!/12!(n-12)!
1/10!(n-10)×(n-11)!×(n-12)!=1/12×11×10!×(n-12)!
1/(n-10)×(n-11)= 1/12×11
12= n^2--11n-10n+110
n^2-21n+98=0
after factorization....
(n-14). (n-7). =0
n=14,7
after put the value of n in....
23!/n!(23-n)!....1. put n=14...
.................. put n=7after solving you get value of 23cn....make me brainleast and follow me
Answered by
3
Answer:
The value of 25Cn is 1.
Step-by-step explanation:
Given,
nC12 = nC13
n!/(n-12)! * 12! = n!/(n-13)! * 13!
1/(n-12)(n-13)! * 12! = 1/(n-13)! * 13*12!
1/(n-12) = 1/13
n-12 = 13
n=25
Thus, nC25 = 25C25
= 25!/(25-25)! * 25!
= 1
Similar questions