If non parallel sides of a trapezium is equal then prove that it is cyclic
Answers
Given: ABCD is a trapezium where AB||CD and AD = BC
To prove: ABCD is cyclic.
Construction: Draw DL⊥AB and CM⊥AB.
Proof: In ΔALD and ΔBMC,
AD = BC (given)
DL = CM (distance between parallel sides)
∠ALD = ∠BMC (90°)
ΔALD ≅ ΔBMC (RHS congruence criterion)
⇒ ∠DAL = ∠CBM (C.P.C.T) (1)
Since AB||CD,
∠DAL + ∠ADC = 180° (sum of adjacent interior angles is supplementary)
⇒ ∠CBM + ∠ADC = 180° (from (1))
⇒ ABCD is a cyclic trapezium (Sum of opposite angles is supplementary)
Hello mate ☺
____________________________
Solution:
It is given that ABCD is a trapezium with AB∥CD and AD=BC
We need to prove that ABCD is a cyclic quadrilateral.
Construction: Draw AM⊥CD and BN⊥CD
In ∆AMD and ∆BNC, we have
AD=BC (Given)
∠AMD=∠BNC (Each equal to 90°)
AM=BN (Distance between two parallel lines is constant.)
Therefore, by RHS congruence rule, we have ∆AMD≅∆BNC
⇒∠D=∠C (Corresponding parts of congruent triangles are equal) ........ (1)
We also have ∠A+∠D=180′ (Co-interior angles, AB∥CD) ......... (2)
From (1) and (2), we can say that ∠A+∠C=180°
⇒ ABCD is a cyclic quadrilateral.
(If the sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.)
I hope, this will help you.☺
Thank you______❤
_____________________________❤