If non - parallel sides of trapezium are equal prove that it is cyclic .
Answers
Answered by
18
In ΔAED and ΔBFC,
AD = BC (Given)
DE = CF (Distance between parallel sides is same)
∠AED = ∠BFC = 90°
ΔAED ≅ ΔBFC (RHS Congruence criterion)
Hence ∠DAE = ∠CBF (CPCT) … (1)
Since AB||CD, AD is transversal
∠DAE + ∠ADC = 180° (Sum of adjacent interior angles is supplementary)
⇒ ∠CBF + ∠ADC = 180° [from (1)]
Since sum of opposite angles is supplementary in trapezium ABCD.
Thus ABCD is a cyclic trapezium
Answered by
19
Hi there!
_______________________
For solutions, Refer to the attached picture.
Regrets for handwriting _/\_
_______________________
Let's see some related topics :
⚫ Circle : The collection of all the points, which are at a fixed distance from a fixed point in a plane, is called a circle.
⚫ Radius : A line joining the centre to the Circumference of the circle, is called radius of a circle.
⚫ Secant : A line intersecting a circle at any two points, is called secant.
⚫ Diameter : A chord passing through the point of the circle, is called diameter. It is the longest chord.
_______________________
Thanks for the question !
☺️❤️☺️
_______________________
For solutions, Refer to the attached picture.
Regrets for handwriting _/\_
_______________________
Let's see some related topics :
⚫ Circle : The collection of all the points, which are at a fixed distance from a fixed point in a plane, is called a circle.
⚫ Radius : A line joining the centre to the Circumference of the circle, is called radius of a circle.
⚫ Secant : A line intersecting a circle at any two points, is called secant.
⚫ Diameter : A chord passing through the point of the circle, is called diameter. It is the longest chord.
_______________________
Thanks for the question !
☺️❤️☺️
Attachments:
Similar questions