Math, asked by rushilrutvigna, 5 months ago

if none of the angles x,y and. (x+y) is an odd multiple of π/2,then prove that tan (x+y)=tanx+tany/1-tanxtany and tan (x-y=tanx-tany/1+tanxtany​

Answers

Answered by jiya5041
1

Answer:

sorry can't help it

Step-by-step explanation:

sorry can't get your question too long can't get your answer

Answered by Dhruv4886
0

It is proven that  tan(x+y) = \frac{tan x+ tany}{1-tanx tany}  and  tan(x -y) = \frac{tan x- tan y}{1+tanx tan y}

Given: x and y are angles  

Tofind: prove that  tan(x+y) = \frac{tan x+ tany}{1-tanx tany}  and tan (x-y) = \frac{tan x - tany}{1+tanx tany}  

Solution:    

tan(x+y) = \frac{tan x+ tany}{1-tanx tany}  

Take LHS   tan(x+y)

tan(x+y) = \frac{sin (x+y)}{cos(x+y)}      

⇒  \frac{sinx cosy +cox siny)}{cos x cos y - sinx sin y}    

\frac{sinx cosy/cos x cosy +cox siny/cos x cos y)}{cos x cos y/cos x coy - sinx sin y/cos x cos y}  

⇒  \frac{  \frac{sinx}{cos x}   + \frac{siny}{cos y} )}{1 - \frac{sinx sin y}{cos x cos y} }   = \frac{  tanx   + tany)}{1 - tan x tany} }  = RHS

Hence it is proven that  tan(x+y) = \frac{tan x+ tany}{1-tanx tany}  

tan (x-y) = \frac{tan x - tany}{1+tanx tany}  

⇒  Here we have  tan(x+y) = \frac{tan x+ tany}{1-tanx tany}  take -y instead of y

⇒  tan(x+(-y)) = \frac{tan x + tan(-y)}{1-tanx tan(-y)}

⇒  tan(x -y) = \frac{tan x- tan y}{1+tanx tan y}        

Hence it is proven that  tan(x -y) = \frac{tan x- tan y}{1+tanx tan y}

#SPJ2

Similar questions