Math, asked by nanintrvalluru, 9 months ago

if normal at p(1,-2) to the circle intersects it again at Q and equation of tangent at Q to circle is 4y=3x+14 then equation of circle is​

Answers

Answered by priyagnanasekar1984
0

Answer:

don't know maybe my brother can get the answer

Answered by sourasghotekar123
0

Answer:

The circle equation is X^{2} +Y^{2} +X-6=0

Step-by-step explanation:

TO FIND:  The equation of circle.

GIVEN:

       The point of normal the circle intersects is p(1,-2)

          The equation of tangent at Q to circle is 4Y=3X+14---(1)

Slope of tangent at point Q is Y=\frac{3}{4} X+\frac{14}{4}

                                          Slope = \frac{3}{4}

                    The slope of PQ will be  (M)= \frac{-1}{\frac{3}{4} }

                                                  M=-\frac{4}{3}

           The equation of PQ is (Y-Y_{1} )= M*(X-X_{1} )

                                                 

                                                  (Y-(-2) )=-\frac{4}{3} (X-1 )

                                                 3(Y+2)=-4(X-1)

                                                  3Y+6=-4X+4

                                                   4X+3Y+2=0-----(2)

                        For the equation Q  equations from  (1) and (2) then we get

                                   

                                     4Y-3X-14=0\\4X+3Y+2=0

                                Y=\frac{3}{4} X+\frac{14}{4}

                         4X+3(\frac{3}{4} X+\frac{14}{4})+2=0\\

                          16X+3(3X+14)+8=0

                           16X+9X+42+8=0\\25X+50=0\\25X=-50\\X=-2

    SO Y=\frac{3}{4} X+\frac{14}{4} substituting X=-2 In this equation

          Y=\frac{3}{4} (-2)+\frac{14}{4}

          Y=2

The points of Q is (-2,2)

      The mid point of the points PQ of the circle is

              c=(h,k)

             C=(\frac{1-2}{2}  ,\frac{-2+2}{2} )

              C=(\frac{-1}{2} ,0)  ,h=-1/2,k=0.

Now the circle equation is (X-h)^{2} +(Y-k)^{2} =r^{2}-----(3)

                  To find the radius of the circle,The normal of the circle passes through the center.

             2r=distance of p(1,-2)  from 3X-4Y+14=0 IS

                  2r=(\frac{3*1-4*(-2)+14}{\sqrt{3^{2}+ 4^{2} } } )

                    2r=(\frac{3+8+14}{5} )

                    2r=\frac{25}{5} \\2r=5\\r=\frac{5}{2}

substituting r value in equation (3)

     (X-\frac{1}{2} )+(Y-0)=(\frac{5}{2})^{2} }

     X^{2} +\frac{1}{2} +X+Y^{2} =\frac{25}{4} \\X^{2}+ Y^{2}+X-6=0

The circle equation is X^{2} +Y^{2} +X-6=0

The project code is #SPJ2

   

                                       

       

Similar questions