Math, asked by Yuzineee7858, 10 months ago

If nth term is 4and difference is 2 and sum of n terms is -14 then find a

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{First\:term=-8}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  Last \: term(a_{n}) = 4 \\  \\  \tt:  \implies Common \: difference = 2 \\  \\  \tt: \implies  Sum \: of \: nth \: term(s_{n}) =  -14 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies First \: term( a_{1}) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a + (n - 1)d \\  \\ \tt:  \implies 4 = a + (n - 1) \times 2 \\  \\ \tt:  \implies 4 = a +2n - 2 \\  \\ \tt:  \implies 6 = a + 2n \\  \\ \tt:  \implies 6 - a = 2n \\  \\ \tt:  \implies n =  \frac{6 - a}{2}  \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  s_{n} =  \frac{n}{2} (2a + (n - 1) \times d \\  \\ \tt:  \implies  - 14 =  \frac{6 - a}{2  \times 2} (2a + ( \frac{6 - a}{2}  - 1) \times 2) \\  \\ \tt:  \implies  - 14 =  \frac{6 - a}{4} (2a + ( \frac{6 - a - 2}{2} ) \times 2  )\\  \\ \tt:  \implies  - 14 =  \frac{6 - a}{4} (2a + 4 - a) \\  \\  \tt:  \implies  14 \times 4 = (a - 6)(a + 4) \\  \\  \tt:  \implies   56 = {a}^{2}  - 2a - 24 \\  \\ \tt:  \implies  {a}^{2}  - 2a - 80 = 0 \\  \\ \tt:  \implies  {a}^{2}  - 10a + 8a - 80 = 0 \\  \\ \tt:  \implies a(a - 10) + 8(a - 10) = 0 \\  \\ \tt:  \implies (a + 8)(a - 10) = 0 \\  \\  \green{\tt:  \implies a =  - 8 \: and \: 10}\\\\ \tt Note-Neglect\:value\:of\:a=10\:because\:it\:gives\:negative\:terms\\\\ \green{\tt\therefore First\:term\:is\:-8}

Answered by Saby123
3

 \tt{\huge{\purple{ ---------------- }}}

QUESTION :

If nth term is 4and difference is 2 and sum of n terms is -14 then find a.

SOLUTION :

We know the following Formulae...

a_{n} = a + { n - 1 } d

=> 4 = a + 2 { n - 1 }

=> a + 2n = 6

=> n = { 6 - a } / { 2 }

Now, we have that the sum of n terms is - 14.

We know that :

S_{n} = { n}/2 [ 2 a + ( n - 1 ) d ]

=> -14 = { 6 - a } / 4 [ 2a + { 4 - a } / 2 × 2 ]

=> -14 = { 6 - a } / 4 [ a + 4 ]

=> 56 = { a - 6 } { a + 4 }

=> a ^ 2 - 2a - 80 = 0

=> a ^ 2 - 10 a + 8 a - 80 = 0

=> a ( a - 10 ) + 8 ( a - 10 ) = 0

=> ( a + 8 )( a - 10 ) = 0

Now, we need to find the Zeroes.

( a + 8 ) = 0

=> a = -8

( a - 10 ) = 0

=> a = 10

So we obtain two values of A, -8 and 10 .

ANSWER :

The two required values of A are -8 and 10.

Similar questions