if numerator is increase by 8 and denominator is double them the resulting fraction is 1by2
Answers
Let,
- Numerator of a fraction be x.
- Denominator of the fraction be y.
According to the question,
- Numerator is increased by 8.
And,
- Denominator is doubled.
Where,
- New fraction =
Answer:
Let,
Numerator of a fraction be x.
Denominator of the fraction be y.
\begin{gathered};\longrightarrow\:\tt{Fraction\:=\:\dfrac{x}{y}\:} \\ \end{gathered}
;⟶Fraction=
y
x
According to the question,
Numerator is increased by 8.
\begin{gathered};\longrightarrow\:\tt{Numerator\:=\:x\:+\:8\:} \\ \end{gathered}
;⟶Numerator=x+8
And,
Denominator is doubled.
\begin{gathered};\longrightarrow\:\tt{Denominator\:=\:2y\:} \\ \end{gathered}
;⟶Denominator=2y
\begin{gathered};\implies\:\tt{New\:fraction\:=\:\dfrac{x\:+\:8}{2y}\:} \\ \end{gathered}
;⟹Newfraction=
2y
x+8
Where,
New fraction = \begin{gathered}\bf{\dfrac{1}{2}} \\ \end{gathered}
2
1
\begin{gathered};\implies\:\tt{\dfrac{1}{2}\:=\:\dfrac{x\:+\:8}{2y}\:} \\ \end{gathered}
;⟹
2
1
=
2y
x+8
\begin{gathered};\implies\:\tt{2y\:=\:(x\:+\:8)\times{2}\:} \\ \end{gathered}
;⟹2y=(x+8)×2
\begin{gathered};\implies\:\tt{2y\:=\:2x\:+\:16\:} \\ \end{gathered}
;⟹2y=2x+16
\begin{gathered};\implies\:\bf\pink{2y\:-\:2x\:=\:16\:} \\ \end{gathered}
;⟹2y−2x=16