If O is the center of the circle, find the value of x in each of the following figures (using the given information):
Answers
(i) (Angles in the same segment of a circle)
But
Now in
(AC is the diameter)
(ii) (angles in the same segment)
And,
Now in triangle OAC,
OA=OC (radii of the same circle)
(opposite angles of equal sides)
Therefore,
(iii)
(sum of angles at a point)
Now arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle
(iv)
Now arc AC subtends reflex ∠AOC at the centre and ∠ABC at the remaining part of the circle.
Relfex
(v)
Now arc BC Subtends reflex ∠COB at the centre and ∠CDB at the remaining part of the circle.
(vi) Arc AB subtends ∠AOD at the centre and ∠ACD at the remaining part of the Circle
∠AOD=2∠ACB
Now in ΔACM
Step-by-step explanation:
(i) ∠ACB=∠ADB∠ACB=∠ADB (Angles in the same segment of a circle)
But ∠ADB=x°∠ADB=x°
⇒∠ABC=x°⇒∠ABC=x°
Now in ΔABCΔABC
∠CAB+∠ABC+∠ACB=180°∠CAB+∠ABC+∠ACB=180°
⇒40°+90°+x° =180°⇒40°+90°+x°=180° (AC is the diameter)
⇒130°+x °=180°⇒130°+x°=180°
⇒x°=180°−130°=50°⇒x°=180°−130°=50°
(ii) ∠ACD=∠ABD∠ACD=∠ABD (angles in the same segment)
And, ∠ACD=x°∠ACD=x°
Now in triangle OAC,
OA=OC (radii of the same circle)
⇒∠ACO=∠AOC⇒∠ACO=∠AOC (opposite angles of equal sides)
Therefore,x° =62°x°=62°
(iii)∠AOB+∠AOC+∠BOC=360°∠AOB+∠AOC+∠BOC=360°
(sum of angles at a point)
⇒∠AOB+80°+130°=360°⇒∠AOB+80°+130°=360°
⇒∠AOB+210°=360°⇒∠AOB+210°=360°
⇒∠AOB=360°−210°=150°⇒∠AOB=360°−210°=150°
Now arc AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle
∴∠AOB=2∠ACB∴∠AOB=2∠ACB
⇒∠ACB= \frac{2}{1}∠AOB= \frac{2}{1}×150 °=75°⇒∠ACB=
1
2
∠AOB=
1
2
×150°=75°
(iv)∠ACB+∠CBD=180°∠ACB+∠CBD=180°
⇒∠ABC+75°=180°⇒∠ABC+75°=180°
⇒∠ABC=180° −75 °=105°⇒∠ABC=180°−75°=105°
Now arc AC subtends reflex ∠AOC at the centre and ∠ABC at the remaining part of the circle.
Relfex∠AOC=2∠ABC < /p > < p > [tex]=2×105°∠AOC=2∠ABC</p><p>[tex]=2×105°
=210°=210°
(v) ∠AOC+∠COB=180°∠AOC+∠COB=180°
➪135° +∠COB=180°➪135°+∠COB=180°
➪∠COB=180°−135°=45°➪∠COB=180°−135°=45°
Now arc BC Subtends reflex ∠COB at the centre and ∠CDB at the remaining part of the circle.
➪∠COB=2∠CDB➪∠COB=2∠CDB
➪∠CDB=\frac{2}{1} ∠COB= \frac{2}{1}×45°= \frac{45°}{2} =22\frac{2}{1}°➪∠CDB=
1
2
∠COB=
1
2
×45°=
2
45°
=22
1
2
°
(vi) Arc AB subtends ∠AOD at the centre and ∠ACD at the remaining part of the Circle
∠AOD=2∠ACB
➪∠ACB= \frac{2}{1}∠AOD= \frac{2}{1}×70°=35 °➪∠ACB=
1
2
∠AOD=
1
2
×70°=35°
➪∠CMO=90°➪∠CMO=90°
➪∠AMC=90°➪∠AMC=90°
(∠AMC+∠CMO=180° )(∠AMC+∠CMO=180°)
Now in ΔACM
∠ACM+∠AMC+∠CAM=180°∠ACM+∠AMC+∠CAM=180°
➪35°+90° +x °=180°➪35°+90°+x°=180°
➪125°+x°=180°➪125°+x°=180°
➪x° =180−125° =55°➪x°=180−125°=55°