If Ø is an acute angle and tanØ + CotØ= 2 then find the value of tan^7 Ø + Cot^7 Ø.
Answers
Hi there !!
Ø = A ( I am taking A instead of thetha)
It is given that, tanA+ CotA= 2
TanA + 1/tanA = 2 {We now that cotA =1/tanA)
Now, tan²A+ 1=2tanA
Tan²A-2tanA+1=0
(Let tanA be x so it will become quadratic equation)
TanA + 1/tanA = 2
{We now that cotA =1/tanA)
Now,
tan²A+ 1=2tanA
Tan²A-2tanA+1=0(Let tanA be x so it will become quadratic equation)
x²-2x+1=0
x²-x-x+1=0
x(x-1) -1(x-1)
(x-1)²=0 or x=1
Means, tanA =1 Value of tan^7+cot^7
(1)^7+(1/1)^7= 2
Thankyou :)
Given,
tanØ + CotØ = 2
SinØ/CosØ + CosØ/SinØ = 2
(Sin^2Ø + Cos^2Ø)/SinØ.CosØ = 2
=> 1/SinØ.CosØ = 2 ( sin^2Ø+ Cos^2Ø=1)
=> 1/2SinØ. CosØ = 2/2 (Dividing both sides by 2).
=> 1/Sin2Ø = 1 ( 2SinØ. CosØ = Sin2Ø)
=> Sin2Ø = Sin 90°
=> 2Ø = 90°
=> Ø = 45°
Again,
Expression :-
=> tan^7Ø + Cot^7Ø
=> tan^7 45° + Cot^7 45°
=> 1^7 + 1^7 ( tan 45° = Cot 45° = 1)
=> 2