Math, asked by vamsi2261, 9 months ago

If one factor of x^4 + x^2 - 20 is x^2 + 5, its other factor is

Answers

Answered by Anonymous
9

Answer:

The other factor is x² - 4

Explaination:-

Given:-

↦ p(x) = x^4 + x^2 -20

↦ g(x) = x² + 5

If one Factor is x² + 5

Then,

To find:-

The other factor of p(x)

Solution:-

By using Division Algorithm ,

\begin{array}{c|c|c} \tt{  x^2 + 5 }&  \tt{x^4 + x^2 - 20} & \sf x^2 - 4  \\  & \sf x^4 + 5x^2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  & \\  &  \underline{ \sf \bf{ ( - ) \: ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } }& \\ & \rm  - 4 {x}^{2}  - 20 & \\ & \sf  - 4 {x}^{2} - 20 & \\& \sf  \underline{(  +  ) \ \:   (  +  ) \:  \:  \:  \:  \:  \:  \:  \: } &   \\ &0& \end{array}

\therefore{q(x) = x² - 4}

\therefore{The \:Other \:Factor \:of \p(x) \:is \:x² -4}

As, The p(x) is also divisible by q(x).

so, we can say that q(x) is also a factor of p(x).

Similar questions