Math, asked by rajatnath, 10 months ago

If one of the zero of polynomial 3x²+5x+k is -1, then find out the value of k.​

Answers

Answered by Anonymous
11

 \large\bf\underline{Given:-}

  • p(x) = 3x² + 5x + k
  • given zero = -1

 \large\bf\underline {To \: find:-}

  • Value of k

 \huge\bf\underline{Solution:-}

  • p(x) = 3x² + 5x + k
  • given zero = -1
  • So, x = -1

✝️ Putting value of x = -1 in the given polynomial.

⠀⠀⠀⠀⠀⠀⠀⠀»» 3x² + 5x + k = 0

⠀⠀⠀⠀⠀⠀⠀⠀»» 3(-1)² + 5(-1) + k = 0

⠀⠀⠀⠀⠀⠀⠀⠀»» 3 × 1 - 5 + k = 0

⠀⠀⠀⠀⠀⠀⠀⠀»» 3 - 5 + k = 0

⠀⠀⠀⠀⠀⠀⠀⠀»» -2 + k = 0

⠀⠀⠀⠀⠀⠀⠀⠀»★ k = 2

━━━━━━━━━━━━━━━━━━

✝️  \large\underline{ \bf \: verification :  - }

  • p(x) = 3x² + 5x + k

putting value k = 2 in the given polynomial

➝ 3x² + 5x + 2

Now finding zeroes of polynomial 3x² + 5x + 2

➝ 3x² + 3x + 2x + 2

➝ 3x(x + 1) + 2(x + 1)

➝ (3x + 2)(x + 1)

  • ➝ x = -2/3 or x = -1

»★ So, we get the same zero x = -1 that is given in the question so value of k = 2 is correct.

hence , Verified.

━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
3

Answer:-

\sf{The \ value \ of \ k \ is \ 2.}

Given:

  • The given polynomial is \sf{3x^{2}+5x+k}

  • One of the zero of the polynomial is -1.

To find:

  • The value of k.

Solution:

\sf{Substitute \ x=(-1) \ in \ given \ polynomial. }

\sf{\implies{3(-1)^{2}+5(-1)+k=0}}

\sf{\implies{3-5+k=0}}

\sf{\implies{-2+k=0}}

\boxed{\sf{\implies{k=2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ 2.}}}

_______________________________________

\sf\blue{\underline{\underline{Verification:}}}

\sf{\implies{3x^{2}+5x+2}}

\sf{\implies{3x^{2}+3x+2x+2}}

\sf{\implies{3x(x+1)+2(x+1)}}

\sf{\implies{(x+1)(3x+2)}}

\sf{\implies{(x+1)=0 \ or \ (3x+2)=0}}

\sf{\implies{x=-1 \ or \ x=\frac{-2}{3}}}

Similar questions